Involvement of plasma membrane redox activity and calcium homeostasis in the UV-B and UV-A/blue light induction of gene expression in Arabidopsis.
نویسندگان
چکیده
UV and blue light are important regulators of plant gene expression and development. We investigated the signal transduction processes involved in the induction of chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL) gene expression by UV-B and UV-A/blue light in an Arabidopsis cell suspension culture. Experiments with electron transport inhibitors indicated that plasma membrane redox activity is involved in both signal transduction pathways. Calcium ionophore treatment stimulated expression of the TOUCH3 gene, and this induction was strongly antagonized by UV-A/blue and UV-B light, suggesting that both light qualities may promote calcium efflux from the cytosol. Consistent with this hypothesis, experiments with specific inhibitors indicated that UV-B and UV-A/blue light regulate calcium levels in a cytosolic pool in part via the action of specific Ca2+-ATPases. On the basis of these and previous findings, we propose that plasma membrane redox activity, initiated by photoreception, is coupled to the regulation of calcium release from an intracellular store, generating a calcium signal that is required to induce CHS expression.
منابع مشابه
Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells.
UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cel...
متن کاملUV-B, UV-A, and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene expression in Arabidopsis.
UV and blue light stimulate transcription of key flavonoid biosynthesis genes in a range of higher plants. Here, we provide evidence that several distinct "inductive" and "synergistic" UV/blue phototransduction pathways regulate chalcone synthase (CHS) gene transcription and transcript accumulation in Arabidopsis leaf tissue. Experiments with the long-hypocotyl hy4-2.23N mutant showed that sepa...
متن کاملUV-A, and Blue Light Signal Transduction Pathways lnteract Synergistically to Regulate Chalcone Synthase Gene Expression in Arabidopsis
UV and blue light stimulate transcription of key flavonoid biosynthesis genes in a range of higher plants. Here, we provide evidence that several distinct "inductive" and ''synergistic" UV/blue phototransduction pathways regulate chalcone synthase (CHS) gene transcription and transcript accumulation in Arabidopsis leaf tissue. Experiments with the long-hypocotyl hy4-2.23N mutant showed that sep...
متن کاملBlue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway.
Light is a central regulator of plant growth and development. Among the processes triggered by blue and UV-A light, phototropism, stomatal movement, and chloroplast orientation rely on the activation of blue-light receptors known as phototropins. So far, these photoreceptors constitute a class of light receptor kinases unique to the plant kingdom. In Arabidopsis thaliana, the two members phot1 ...
متن کاملCharacterization Study for Nanocompositions of Methylene Blue and Riboflavin-Nafion on the Electrode Surface
Nafion is a perfluorinated anionic polyelectrolyte. The increasing popularity of nafion for the fabrication of redox polymer modified electrodes in recent years arises from easy fabrication, good electrical conductivity and high partition coefficients of many redox compounds in nafion. To investigate the production of nano-compositions by mixing electron transfer material and nafion polyme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 10 12 شماره
صفحات -
تاریخ انتشار 1998